Реферат на тему:Информационные технологии для организации и проведения вычислительных экспериментов

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ М.Е. ЕВСЕВЬЕВА»

Факультет физико-математический

Кафедра информатики и вычислительной техники

РЕФЕРАТ

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОРГАНИЗАЦИИ И ПРОВЕДЕНИЯ ВЫЧИСЛИТЕЛЬНЫХ ЭКСПЕРИМЕНТОВ

Автор работы _______________________________________ А. А. Климентьева

Направление подготовки 44.03.05 Педагогическое образование

Профиль Математика. Информатика

Руководитель работы

канд. физ.-мат. наук, доцент ___________________________ Т. В. Кормилицына

Оценка _______________

Саранск 2021

Содержание

Введение 3

1 Вычислительный эксперимент и его особенности 4

2 Основные этапы вычислительного эксперимента 5

3 Современные программные средства для организации и проведения вычислительных экспериментов. 7

Заключение 12

Список использованных источников 12

Введение

Ни одно техническое достижение не повлияло так на интеллектуальную деятельность человека, как электронно-вычислительные машины. Увеличив в десятки и сотни миллионов раз скорость выполнения арифметических и логических операций, колоссально повысив тем самым производительность интеллектуального труда человека, ЭВМ вызвали коренные изменения в области обработки информации. По существу, мы являемся свидетелями своего рода «информационной революции», подобной той промышленной революции, которую породило в 18 веке изобретение паровой машины и связанное с ним резкое повышение производительности физического труда. В настоящее время вычислительные машины проникают во все сферы интеллектуальной деятельности человека, становятся одним из решающих факторов ускорения темпов научно-технического прогресса.

  1. Вычислительный эксперимент и его особенности

Научное исследование реального процесса можно проводить теоретически или экспериментально, которые проводятся независимо друг от друга. Такой путь познания истины носит односторонний характер. В современных условиях развития науки и техники стараются проводить комплексное исследование объекта. Этого можно добиться на основе новой, удовлетворяющей требованиям времени, методологии и технологии научных исследований.

Широкое применение ЭВМ в математическом моделировании, достаточно мощная теоретическая и экспериментальная база позволяют говорить о вычислительном эксперименте как о новой технологии и методологии в научных и прикладных исследованиях.

Вычислительный эксперимент – это эксперимент над математической моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах явления, описываемого математической моделью.

Он позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ и в короткие сроки без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство. Прибором эксперимента здесь является компьютер. Это процедура часто отождествляется с компьютерным моделированием.

Данный вид эксперимента становится новым инструментом, методом научного познания, новой технологией из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее); грубо, но образно говоря: «наши знания об окружающем мире – линейны и детерминированы, а процессы в окружающем мире – нелинейны и стохастичны».

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.). В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

2 Основные этапы вычислительного эксперимента

Этапы решения задачи с применением ЭВМ можно рассматривать как один технологический цикл вычислительного эксперимента. А вообще, вычислительный эксперимент как новая методика исследования «состоялся» после того, как удалось на каждом из этапов традиционной цепочки эффективно использовать вычислительную машину.

Все этапы технологического цикла вычислительного эксперимента тесно связаны между собой и служат единой цели — получению с заданной точностью за короткое время адекватного количественного описания поведения изучаемого реального объекта в тех или иных условиях. Поэтому все этапы технологического цикла должны быть одинаково прочными. Слабость в одном звене влечёт за собой слабость в остальных звеньях технологии.

Теперь основные этапы вычислительного эксперимента:

  • Проведение натурного эксперимента

  • Построение математической модели

  • Выбор и применение численного метода для нахождения решения

  • Обработка результатов вычислений

  • Сравнение с результатами натурного эксперимента

  • Принятие решения о продолжении натурных экспериментов

  • Продолжение натурного эксперимента для получения данных, необходимых для уточнения модели

  • Накопление экспериментальных данных

  • Построение математической модели

  • Автоматическое построение программной реализации математической модели

  • Автоматизированное нахождение численного решения

  • Автоматизированное преобразования результатов вычислительных в форму, удобную для анализа

  • Принятие решения о продолжении натурных экспериментов

В наиболее общем виде этапы вычислительного эксперимента можно представить в виде последовательности технологических операций:

  • Построение математической модели.

  • Преобразование математической модели.

  • Планирование вычислительного эксперимента.

  • Построение программной реализации математической модели

  • Отладка и тестирование программной реализации.

  • Проведение вычислительного эксперимента.

  • Документирование эксперимента.

3 Современные программные средства для организации и проведения вычислительных экспериментов.

Многие пользователи, искренне желая применить компьютерное моделирование в своей практической деятельности, сталкиваются с серьезными трудностями при освоении и использовании современных программных средств. Для работы с ними все еще требуются знания, не относящиеся непосредственно к моделированию, а проведение вычислительного эксперимента остается кропотливой и многотрудной работой. В то же время типовых задач моделирования не так уж и много, и для них можно создать удобный и понятный интерфейс в рамках одного, «универсального» пакета.

Создание прототипа универсального пакета из стандартных модулей, ориентированного на пользователя, не являющегося специалистом в области программирования и численного моделирования, приведет к тому, что компьютерное моделирование действительно станет инструментом научного работника, инженера и преподавателя.

Программные средства для моделирования можно разделить на две группы.

К первой отнесем пакеты, предназначенные для решения сложных промышленных и научно-исследовательских задач большими производственными или научными коллективами. Пакеты первой группы условно назовем промышленными. Такие проекты невозможны без предварительных исследований, выполняемых отдельными учеными или проектировщиками. Стартовой точкой в них является гипотеза, а основной задачей — ее проверка. Промышленные пакеты слишком сложны и громоздки для проведения исследований на ранних стадиях и тем более обучения, для этого нужны специальные программные средства. Именно они, с нашей точки зрения, и образуют вторую группу пакетов. Назовем пакеты второй группы универсальными, подчеркивая этим, что они уступают по количеству уникальных возможностей промышленным, зато более просты для освоения и доступны отдельному исследователю при решении относительно несложных задач из практически любой прикладной области. Под несложными мы понимаем не простые задачи, а задачи, посильные одному разработчику, не являющемуся специалистом в области программирования и методов вычислений. В универсальных пакетах нужны разнообразные численные библиотеки, способные справиться с широким спектром проблем, а не методы, ориентированные на узкий класс задач. Для них нужны графические библиотеки, обеспечивающие показ изучаемого явления с разных сторон, а не одним, принятым в конкретной области, способом и, конечно же, поддержка интерактивного вмешательства в ход компьютерного эксперимента.

С момента появления пакета Simulink универсальные, не ориентированные на конкретные прикладные области пакеты для моделирования и исследования динамических систем в широком понимании этого термина, включая и дискретные, и непрерывные, и гибридные модели, стали повседневной реальностью.

Simulink – это система имитационного блочного моделирования дина-мических систем, являющаяся подсистемой MATLAB. Средства моделирова-ния Simulink основываются на программных средствах MATLAB. Относительная простота и интуитивная ясность входных языков универсальных пакетов в сочетании с разумными требованиями к мощности компьютеров позволяют использовать эти пакеты в учебном процессе. Изучаемые с помощью универсальных пакетов модели можно условно разделить на модели для естественнонаучных областей и модели технических объектов. В первом случае мы обычно имеем дело с моделью, сведенной к одной, итоговой системе уравнений, или, другими словами, с однокомпонентной моделью, а во втором — со структурированной, многокомпонентной моделью, итоговая система для которой должна строиться автоматически по описанию отдельных компонент.

И среди однокомпонентных, и среди многокомпонентных, наибольший интерес представляют модели, чье поведение меняется во времени в зависимости от наступающих событий. Их часто называют гибридными системами. В отечественной литературе также используются синонимы — непрерывно-дискретные, системы с переменной структурой, реактивные, событийно-управляемые.

Необходимость обеспечения обратной связи между исследователем и моделью опять же приводит нас к событийно-управляемым системам и дополнительно заставляет проводить и визуализировать вычислительный эксперимент в реальном времени. Назовем такой способ познания действительности активным компьютерным экспериментом, в отличие от традиционного пассивного вычислительного эксперимента, план которого может быть составлен заранее.

Отличительной чертой современных пакетов является объектно-ориентированный подход, позволяющий обеспечить еще одно очень важное и характерное для научных исследований и обучения требование — возможность легко пополнять и модифицировать разрабатываемую библиотеку, представляющую обычно последовательность все более сложных моделей, свойства которых приходится постоянно сравнивать.

Практически все существующие современные и широко используемые пакеты не приспособлены в полной мере для проведения активного вычислительного эксперимента.

Из всего множества современных пакетов моделирования, пакеты Model Vision Studium(MVS), AnyLogic наиболее приспособлены для проведения активных компьютерных экспериментов. Model Vision Studium (MVS) – компьютерная лаборатория для моделирования и исследования сложных динамических систем.

Данная система представляет собой интегрированную графическую оболочку для быстрого создания интерактивных визуальных моделей сложных динамических систем и проведения вычислительных экспериментов с ними. Пакет AnyLogic разработанный фирмой «Экспериментальные объектные технологии» более мощная профессиональная система моделирования, которая для непрерывных и гибридных моделей использует решения апробированные в пакете Model Vision Studium, но является слишком сложным и дорогим. В силу этого и того, что разработчики пакета визуального моделирования MVS решили продолжать совершенствовать свой пакет, позиционируя его как компактный, несложный и недорогой инструмент для научных исследований и обучения, мы решили свой выбор остановить на пакете MVS. Кроме всего этого разработчики пакета визуального моделирования MVS объявили также об изменении политики его распространения. Вместо ограниченной бесплатной версии MVS Lite предлагается полноценная, свободная для некоммерческого использования версия MVS Free. Одновременно с экспериментальной версией будет продолжено распространение недорогой версии MVS Standard для отдельных преподавателей и университетов.

MVS использует современные объектно-ориентированные входные языки, используют гибридные автоматы как элементы входного языка, однако не может работать с неориентированными блоками. Пакет Model Vision Studium снабжен редактором трехмерной анимации (рис. 1), компактен и прост в освоении.

Основным направлением развития пакета MVS является объектно-ориентированное моделирование непрерывно-дискретных систем с использованием формализма гибридного автомата. В ближайшее время предполагается внедрить в пакет «свободную» форму записи уравнений (с использованием производных произвольного порядка, а также уравнений, не разрешенных относительно производных), неориентированные блоки и связи, а также динамические структуры и графический язык управления экспериментом на основе карт состояния.

Scilab – это система компьютерной математики, являющаяся самым полным аналогом пакета Matlab, предназначенная для выполнения научных и инженерных вычислений. В настоящее время система компьютерной математики SciLab обладает достаточно большой популярность. Основным ее достоинством является, то, что это бесплатное программное обеспечение с открытым исходным кодом для инженеров и ученых. Пакет SciLab используется для моделирования и анализа данных, в промышленных (Airbus, ArcelorMittal, Air liquide, Sanofi, Microchip) и научно-исследовательских (Fraunhofer Institute, аэрокосмические агентства) компаниях.

Первый релиз программы был выпущен в 1994 году. Разработка системы Scilab ведется сотрудниками французского Национального института информатики и автоматизации с 80-х годов прошлого века. Вычислительные возможности Scilab обеспечены приблизительно тысячью встроенных функций, что вполне соответствует математическим пакетам профессионального уровня. Scilab имеет и множество встроенных функций, реализующих численные методы. С их помощью можно решить нелинейные или дифференциальные уравнения, аппроксимировать или интерполировать таблично заданные функции, вычислять определенные интегралы, найти экстремумы одномерных и многомерных функций и многое другое. Программная система Scilab является весьма полезным программным продуктом для решения разного рода вычислительных задач. Она обладает мощным функционалом для решения задач и позволяет визуально отображать результаты вычислений.

SciLab позволяет работать с элементарным и большим числом специальных функций (Бесселя, Неймана, интегральные функции). Также имеет мощные средства работы с матрицами, полиномами (в том числе и символьно), производить численные вычисления (например, численное интегрирование) и решение задач линейной алгебры, оптимизации и симуляции, мощные статистические функции, а также средство для построения и работы с графиками.

Заключение

Подводя итог, можно сделать вывод о том, что информационные технологии активно участвуют в организации и проведении вычислительных экспериментов.

В современном мире существует большое количество программных продуктов для решения разного рода вычислительных задач. Как правило, такие программы обладают мощным функционалом и позволяет визуально отображать результаты вычислений. Примерами таких систем могут послужить:

  • SciLab – система компьютерной математики, являющаяся самым полным аналогом пакета Matlab.

  • Model Vision Studium (MVS) – компьютерная лаборатория для моделирования и исследования сложных динамических систем.

  • AnyLogic – мощная профессиональная система моделирования, которая для непрерывных и гибридных моделей использует решения апробированные в пакете Model Vision Studium и другие.

Список использованных источников

  1. Зализняк, В.Е. Теория и практика по вычислительной математике : учебное пособие / В.Е. Зализняк, Г.И. Щепановская ; Сибирский федеральный университет. – Красноярск : Сибирский федеральный университет (СФУ), 2012. – 174 с. : табл. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=229271 (дата обращения: 14.10.2021). – ISBN 978-5-7638-2498-8. – Текст : электронный.

  2. Костин, В. П. Теория эксперимента : учебное пособие / В. П. Костин ; Оренбургский государственный университет, Кафедра программного обеспечения вычислительной техники и автоматизированных систем. – Оренбург : Оренбургский государственный университет, 2013. – 209 с. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=259219 (дата обращения: 14.10.2021). – Текст : электронный.

  3. Орешкова, М. Н. Численные методы: теория и алгоритмы : учебное пособие / М. Н. Орешкова ; Северный (Арктический) федеральный университет им. М. В. Ломоносова. – Архангельск : Северный (Арктический) федеральный университет (САФУ), 2015. – 120 с. : схем., табл. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=436397 (дата обращения: 14.10.2021). – Библиогр. в кн. – ISBN 978-5-261-01040-1. – Текст : электронный.

  4. Павлова, Т. Ю. Вычислительный эксперимент и подготовка научной публикации : учебное пособие / Т. Ю. Павлова. – Кемерово : Кемеровский государственный университет, 2009. – 84 с. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=232451 (дата обращения: 14.10.2021). – ISBN 978-5-8353-0956-6. – Текст : электронный.

  5. Панкратьев, Е. В. Элементы компьютерной алгебры : учебник / Е. В. Панкратьев ; Национальный Открытый Университет «ИНТУИТ». – Москва : Интернет-Университет Информационных Технологий (ИНТУИТ) : Бином. Лаборатория знаний, 2007. – 247 с. – (Основы информатики и математики). – URL: https://biblioclub.ru/index.php?page=book&id=233322 (дата обращения: 15.10.2021). – Текст : электронный.

Поделитесь материалом коллегами:
Помощь учителям и учащимся